## Exotic Crossed Products

Rufus Willett<br>(joint with Alcides Buss and Siegfried Echterhoff, and with Paul Baum and Erik Guentner)

University of Hawai'i

WCOAS, University of Denver, November 2014

$$
G \text { : locally compact group (maybe discrete). }
$$

$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.
$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.

## Definition (Brown-Guentner,

$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.
Definition (Brown-Guentner, but Kunze-Stein ~1960, Gelfand-Naimark $\sim 1940$, Mehler $\sim 1880, \ldots$ )
For $p \in[2, \infty),(\pi, H)$ is an $L^{p}$-representation if the set

$$
\left\{(\eta, \xi) \in H \oplus H \mid g \mapsto\langle\eta, \pi(g) \xi\rangle \text { is in } L^{p}(G)\right\}
$$

is dense.
$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.
Definition (Brown-Guentner, but Kunze-Stein ~1960, Gelfand-Naimark $\sim 1940$, Mehler $\sim 1880, \ldots$ )
For $p \in[2, \infty),(\pi, H)$ is an $L^{p}$-representation if the set

$$
\left\{(\eta, \xi) \in H \oplus H \mid g \mapsto\langle\eta, \pi(g) \xi\rangle \text { is in } L^{p}(G)\right\}
$$

is dense.

Examples:

- The regular representation on $L^{2}(G)$ is an $L^{p}$-representation for all $p$.
$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.
Definition (Brown-Guentner, but Kunze-Stein ~1960, Gelfand-Naimark $\sim 1940$, Mehler $\sim 1880, \ldots$ )
For $p \in[2, \infty),(\pi, H)$ is an $L^{p}$-representation if the set

$$
\left\{(\eta, \xi) \in H \oplus H \mid g \mapsto\langle\eta, \pi(g) \xi\rangle \text { is in } L^{p}(G)\right\}
$$

is dense.

Examples:

- The regular representation on $L^{2}(G)$ is an $L^{p}$-representation for all $p$.
- The trivial representation on $\mathbb{C}$ is an $L^{p}$-representation only for $p=\infty$.
$G$ : locally compact group (maybe discrete).
$\pi: G \rightarrow \mathcal{U}(H):$ (strongly continuous) unitary representation.
Definition (Brown-Guentner, but Kunze-Stein ~1960, Gelfand-Naimark $\sim 1940$, Mehler $\sim 1880, \ldots$ )
For $p \in[2, \infty),(\pi, H)$ is an $L^{p}$-representation if the set

$$
\left\{(\eta, \xi) \in H \oplus H \mid g \mapsto\langle\eta, \pi(g) \xi\rangle \text { is in } L^{p}(G)\right\}
$$

is dense.

Examples:

- The regular representation on $L^{2}(G)$ is an $L^{p}$-representation for all $p$.
- The trivial representation on $\mathbb{C}$ is an $L^{p}$-representation only for $p=\infty$.
- If $p>q$, then any $L^{q}$-representation is an $L^{p}$-representation.
(1) $L^{p}$-representations
(2) Crossed product functors
(3) Exactness of the Baum-Connes conjecture


## $L^{p}$-representation of $G$ : has dense set of matrix coefficients in $L^{p}(G)$. Examples?

## $L^{p}$-representation of $G$ : has dense set of matrix coefficients in $L^{p}(G)$. Examples?

$\phi: G \rightarrow \mathbb{C}$ is positive type if for $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq G,\left\{z_{1}, \ldots, z_{n}\right\} \subseteq \mathbb{C}$,

$$
\sum_{i, j=1}^{n} \overline{z_{i}} z_{j} \phi\left(g_{i}^{-1} g_{j}\right) \geqslant 0
$$

$L^{p}$-representation of $G$ : has dense set of matrix coefficients in $L^{p}(G)$. Examples?
$\phi: G \rightarrow \mathbb{C}$ is positive type if for $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq G,\left\{z_{1}, \ldots, z_{n}\right\} \subseteq \mathbb{C}$,

$$
\sum_{i, j=1}^{n} \overline{z_{i}} z_{j} \phi\left(g_{i}^{-1} g_{j}\right) \geqslant 0
$$

GNS $\rightsquigarrow$ representation $\pi_{\phi}: G \rightarrow \mathcal{U}(H)$, vector $\xi$ with

$$
\phi(g)=\left\langle\xi, \pi_{\phi}(g) \xi\right\rangle .
$$

$L^{p}$-representation of $G$ : has dense set of matrix coefficients in $L^{p}(G)$. Examples?
$\phi: G \rightarrow \mathbb{C}$ is positive type if for $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq G,\left\{z_{1}, \ldots, z_{n}\right\} \subseteq \mathbb{C}$,

$$
\sum_{i, j=1}^{n} \overline{z_{i}} z_{j} \phi\left(g_{i}^{-1} g_{j}\right) \geqslant 0
$$

GNS $\rightsquigarrow$ representation $\pi_{\phi}: \quad G \rightarrow \mathcal{U}(H)$, vector $\xi$ with

$$
\phi(g)=\left\langle\xi, \pi_{\phi}(g) \xi\right\rangle .
$$

## Lemma (Dixmier?)

If $\phi \in L^{p}(G)$ is positive type, then $\pi_{\phi}$ is an $L^{p}$-representation.
Proof: The dense subset $C_{c}(G) \cdot \xi$ gives rise to $L^{p}$ matrix coefficients.

Positive type functions in $L^{p}(G) \stackrel{G N S}{\rightsquigarrow} L^{p}$-representations.

## Positive type functions in $L^{p}(G) \stackrel{G N S}{\rightsquigarrow} L^{p}$-representations.

Example: $G=F_{2}$.


Positive type functions in $L^{P}(G) \stackrel{G N S}{\rightsquigarrow} L^{p}$-representations.

Example: $G=F_{2}$.


## Theorem (Haagerup?)

For each fixed $t \in[0, \infty]$, the function

$$
\phi_{t}: F_{2} \rightarrow \mathbb{C}, \quad g \mapsto e^{-t|g|}
$$

is positive type.

As for $n \geqslant 2$,

$$
\left|\left\{g \in F_{2}| | g \mid=n\right\}\right|=4 \cdot 3^{n-1}
$$

As for $n \geqslant 2$,

$$
\left|\left\{g \in F_{2}| | g \mid=n\right\}\right|=4 \cdot 3^{n-1}
$$

we have

$$
\left\|\phi_{t}\right\|_{l p(G)}^{p}=1+\sum_{n=1}^{\infty}\left(4 \cdot 3^{n-1}\right)\left(e^{-t n}\right)^{p} \sim \sum_{n=1}^{\infty}\left(e^{-t p} 3\right)^{n}
$$

As for $n \geqslant 2$,

$$
\left|\left\{g \in F_{2}| | g \mid=n\right\}\right|=4 \cdot 3^{n-1}
$$

we have

$$
\left\|\phi_{t}\right\|_{p^{p}(G)}^{p}=1+\sum_{n=1}^{\infty}\left(4 \cdot 3^{n-1}\right)\left(e^{-t n}\right)^{p} \sim \sum_{n=1}^{\infty}\left(e^{-t p} 3\right)^{n}
$$

which is finite if and only if $p>\log (3) / t$.

As for $n \geqslant 2$,

$$
\left|\left\{g \in F_{2}| | g \mid=n\right\}\right|=4 \cdot 3^{n-1}
$$

we have

$$
\left\|\phi_{t}\right\|_{I^{p}(G)}^{p}=1+\sum_{n=1}^{\infty}\left(4 \cdot 3^{n-1}\right)\left(e^{-t n}\right)^{p} \sim \sum_{n=1}^{\infty}\left(e^{-t p} 3\right)^{n}
$$

which is finite if and only if $p>\log (3) / t$.

Extrapolate: for any $p>q \geqslant 2, F_{2}$ has $L^{p}$-representations which are not $L^{q}$-representations.

As for $n \geqslant 2$,

$$
\left|\left\{g \in F_{2}| | g \mid=n\right\}\right|=4 \cdot 3^{n-1}
$$

we have

$$
\left\|\phi_{t}\right\|_{I^{p}(G)}^{p}=1+\sum_{n=1}^{\infty}\left(4 \cdot 3^{n-1}\right)\left(e^{-t n}\right)^{p} \sim \sum_{n=1}^{\infty}\left(e^{-t p} 3\right)^{n}
$$

which is finite if and only if $p>\log (3) / t$.

Extrapolate: for any $p>q \geqslant 2, F_{2}$ has $L^{p}$-representations which are not $L^{q}$-representations.

Similar example: $G=S L(2, \mathbb{R})$ : 'the analogue' of $\phi(g)=e^{-|g|}$ is

$$
\phi\left(k\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) k^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2}{\left|\left(a^{2}+a^{-2}\right)+\left(a^{2}-a^{-2}\right) \cos (\theta)\right|} d \theta
$$

## Definition (Brown-Guentner)

$C_{p}^{*}(G)$ is the completion of $C_{c}(G)$ for the norm

$$
\|f\|:=\sup \left\{\|\pi(f)\|_{\mathcal{B}(\mathcal{H})} \mid(\mathcal{H}, \pi) \text { an } L^{p} \text {-representation }\right\} .
$$

## Definition (Brown-Guentner)

$C_{p}^{*}(G)$ is the completion of $C_{c}(G)$ for the norm

$$
\|f\|:=\sup \left\{\|\pi(f)\|_{\mathcal{B}(\mathcal{H})} \mid(\mathcal{H}, \pi) \text { an } L^{p} \text {-representation }\right\} .
$$

Remarks:

- For any $G, C_{\infty}^{*}(G)=C_{\max }^{*}(G)$ and $C_{2}^{*}(G)=C_{\text {red }}^{*}(G)$.


## Definition (Brown-Guentner)

$C_{p}^{*}(G)$ is the completion of $C_{c}(G)$ for the norm

$$
\|f\|:=\sup \left\{\|\pi(f)\|_{\mathcal{B}(\mathcal{H})} \mid(\mathcal{H}, \pi) \text { an } L^{p} \text {-representation }\right\} .
$$

Remarks:

- For any $G, C_{\infty}^{*}(G)=C_{\max }^{*}(G)$ and $C_{2}^{*}(G)=C_{\text {red }}^{*}(G)$.
- The duals $\hat{G}_{p}:=\widehat{C_{p}^{*}(G)}$ are nested, i.e.

$$
2 \leqslant p \leqslant q \leqslant \infty \quad \Rightarrow \quad \hat{G}_{2} \subseteq \hat{G}_{p} \subseteq \hat{G}_{q} \subseteq \widehat{G}
$$

## Definition (Brown-Guentner)

$C_{p}^{*}(G)$ is the completion of $C_{c}(G)$ for the norm

$$
\|f\|:=\sup \left\{\|\pi(f)\|_{\mathcal{B}(\mathcal{H})} \mid(\mathcal{H}, \pi) \text { an } L^{p} \text {-representation }\right\} .
$$

Remarks:

- For any $G, C_{\infty}^{*}(G)=C_{\max }^{*}(G)$ and $C_{2}^{*}(G)=C_{\text {red }}^{*}(G)$.
- The duals $\hat{G}_{p}:=\widehat{C_{p}^{*}(G)}$ are nested, i.e.

$$
2 \leqslant p \leqslant q \leqslant \infty \quad \Rightarrow \quad \hat{G}_{2} \subseteq \hat{G}_{p} \subseteq \hat{G}_{q} \subseteq \hat{G}
$$

- If $G$ is amenable, $C_{p}^{*}(G)=C_{q}^{*}(G)$ for all $p, q$ (and so $\left.\hat{G}_{p}=\hat{G}_{q}\right)$.

Example: $G=S L(2, \mathbb{R})$.

Example: $G=S L(2, \mathbb{R})$.

$$
\widehat{S L(Z, \mathbb{R})}=
$$

mu $=$ rep.ns of $C_{2}^{*}(G)$
$n m=\operatorname{rep} n \mathrm{~s}$ of $C_{\rho}^{+}(G)$,
same $p \in(2, \infty)$
$m m=$ on $Y$ extends to $C_{\infty}^{*}(G)$
tenvial representation

Example: $G=S L(2, \mathbb{R})$.


Theorem (Wiersma, Stein?)

$$
C_{p}^{*}(G) \neq C_{q}^{*}(G) \text { for all } \infty \geqslant p>q \geqslant 2 \text {. }
$$

Example: $G=S L(2, \mathbb{R})$.


Theorem (Wiersma, Stein?)

$$
C_{p}^{*}(G) \neq C_{q}^{*}(G) \text { for all } \infty \geqslant p>q \geqslant 2 \text {. }
$$

On the other hand, $K\left(C_{p}^{*}(G)\right)=K_{*}\left(C_{q}^{*}(G)\right)$ for all $p, q$.

## Example: $G=F_{2}$.

Example：$G=F_{2}$ ．


Example: $G=F_{2}$.


$$
\begin{aligned}
& \text { mu }=\text { rep.ns of } C_{2}^{+}(G) \\
& m=\text { rep.ns of } C_{p}^{+}(G),
\end{aligned}
$$

same $p \in(2, \infty)$

$$
m m=\text { an } y \text { extends to } C_{\infty}^{*}(G)
$$

Theorem (Okayasu, Cuntz, Pimsner-Voiculescu, Buss-Echterhoff-W.) $C_{p}^{*}(G) \neq C_{q}^{*}(G)$ for all $\infty \geqslant p>q \geqslant 2$.

Example: $G=F_{2}$.


$$
\begin{aligned}
& m=\text { rep.ns of } C_{2}^{+}(G) \\
& m=\text { rep.ns of } C_{p}^{+}(G)
\end{aligned}
$$

same $p \in(2, \infty)$

$$
m m=\text { an } y \text { extends to } C_{\infty}^{*}(G)
$$

Theorem (Okayasu, Cuntz, Pimsner-Voiculescu, Buss-Echterhoff-W.) $C_{p}^{*}(G) \neq C_{q}^{*}(G)$ for all $\infty \geqslant p>q \geqslant 2$. Moreover, for all $p$ :

$$
K_{i}\left(C_{p}^{*}(G)\right) \cong \begin{cases}\mathbb{Z} & i=0 \\ \mathbb{Z} \oplus \mathbb{Z} & i=1\end{cases}
$$

How to prove that

$$
K_{*}\left(C_{p}^{*}\left(F_{2}\right)\right)=K_{*}\left(C_{q}^{*}\left(F_{2}\right)\right)
$$

for all $p, q$ ?

How to prove that

$$
K_{*}\left(C_{p}^{*}\left(F_{2}\right)\right)=K_{*}\left(C_{q}^{*}\left(F_{2}\right)\right)
$$

for all $p, q$ ?
Strategy:
(1) Define an exotic crossed product functor

$$
\rtimes_{p}:\left\{G-C^{*} \text {-algebras }\right\} \rightarrow\left\{C^{*} \text {-algebras }\right\}, \quad A \mapsto A \rtimes_{p} G
$$

such that $\mathbb{C} \rtimes_{p} G=C_{p}^{*}(G)$.

How to prove that

$$
K_{*}\left(C_{p}^{*}\left(F_{2}\right)\right)=K_{*}\left(C_{q}^{*}\left(F_{2}\right)\right)
$$

for all $p, q$ ?
Strategy:
(1) Define an exotic crossed product functor

$$
\rtimes_{p}:\left\{G-C^{*} \text {-algebras }\right\} \rightarrow\left\{C^{*} \text {-algebras }\right\}, \quad A \mapsto A \rtimes_{p} G
$$

such that $\mathbb{C} \rtimes_{p} G=C_{p}^{*}(G)$.
(2) Show that it gives rise to a descent functor

$$
\rtimes_{p}: K K^{G} \rightarrow K K .
$$

How to prove that

$$
K_{*}\left(C_{p}^{*}\left(F_{2}\right)\right)=K_{*}\left(C_{q}^{*}\left(F_{2}\right)\right)
$$

for all $p, q$ ?
Strategy:
(1) Define an exotic crossed product functor

$$
\rtimes_{p}:\left\{G-C^{*} \text {-algebras }\right\} \rightarrow\left\{C^{*} \text {-algebras }\right\}, \quad A \mapsto A \rtimes_{p} G
$$

such that $\mathbb{C} \rtimes_{p} G=C_{p}^{*}(G)$.
(2) Show that it gives rise to a descent functor

$$
\rtimes_{p}: K K^{G} \rightarrow K K .
$$

(3) Use that in $K K^{G}, \mathbb{C}$ is equivalent to an amenable $G-C^{*}$-algebra $A$ (Cuntz), and here all crossed products are the same.

## Definition (Baum-Guentner-W. ?)

A crossed product is a functor

$$
\rtimes:\left\{G-C^{*} \text {-algebras }\right\} \rightarrow\left\{C^{*} \text {-algebras }\right\}, \quad A \mapsto A \rtimes G
$$

such that there are surjective natural transformations

$$
A \rtimes_{\max } G \rightarrow A \rtimes G \rightarrow A \rtimes_{\text {red }} G
$$

which compose to the standard quotient $A \rtimes_{\max } G \rightarrow A \rtimes_{\text {red }} G$.

## Definition (Baum-Guentner-W. ?)

A crossed product is a functor

$$
\rtimes:\left\{G-C^{*} \text {-algebras }\right\} \rightarrow\left\{C^{*} \text {-algebras }\right\}, \quad A \mapsto A \rtimes G
$$

such that there are surjective natural transformations

$$
A \rtimes_{\max } G \rightarrow A \rtimes G \rightarrow A \rtimes_{\text {red }} G
$$

which compose to the standard quotient $A \rtimes_{\max } G \rightarrow A \rtimes_{\text {red }} G$.

Examples: $\rtimes_{\text {max }}, \rtimes_{\text {red }}$, but many others due to Brown-Guentner, Kaliszewski-Landstad-Quigg,...

## Theorem (Buss-Echterhoff-W.)

Let $\rtimes$ be a crossed product functor. The following are equivalent.
(1) If $p A p$ is a $G$-invariant corner of $A$, then

$$
(p A p) \rtimes G \rightarrow A \rtimes G
$$

is injective.

## Theorem (Buss-Echterhoff-W.)

Let $\rtimes$ be a crossed product functor. The following are equivalent.
(1) If $p A p$ is a $G$-invariant corner of $A$, then

$$
(p A p) \rtimes G \rightarrow A \rtimes G
$$

is injective.
(2) $\rtimes$ extends to a functor on the category of G-C*-algebras and equivariant $c p$ maps.

## Theorem (Buss-Echterhoff-W.)

Let $\rtimes$ be a crossed product functor. The following are equivalent.
(1) If $p A p$ is a $G$-invariant corner of $A$, then

$$
(p A p) \rtimes G \rightarrow A \rtimes G
$$

is injective.
(2) $\rtimes$ extends to a functor on the category of G-C*-algebras and equivariant $c p$ maps.
( $\rtimes$ extends to a functor on the category of G-C*-algebras and equivariant correspondences (in the sense of Rieffel, Echterhoff-Kaliszewski-Quigg-Raeburn).

## Theorem (Buss-Echterhoff-W.)

Let $\rtimes$ be a crossed product functor. The following are equivalent.
(1) If $p A p$ is a $G$-invariant corner of $A$, then

$$
(p A p) \rtimes G \rightarrow A \rtimes G
$$

is injective.
(2) $\rtimes$ extends to a functor on the category of G-C*-algebras and equivariant $c p$ maps.
(3) $\rtimes$ extends to a functor on the category of G-C*-algebras and equivariant correspondences (in the sense of Rieffel, Echterhoff-Kaliszewski-Quigg-Raeburn).

If $\rtimes$ satisfies these conditions, we call it a correspondence functor.

## Theorem (Buss-Echterhoff-W.)

Any correspondence functor induces a descent morphism

$$
\rtimes: K K^{G} \rightarrow K K .
$$

With a little more work, if $G$ is $K$-amenable (e.g. $G=F_{2}, S L(2, \mathbb{R})$ ), then all the crossed products $C^{*}$-algebras

$$
\{A \rtimes G \mid \rtimes \text { a correspondence functor }\}
$$

have the same $K$-theory.

## Theorem (Buss-Echterhoff-W.)

Any correspondence functor induces a descent morphism

$$
\rtimes: K K^{G} \rightarrow K K .
$$

With a little more work, if $G$ is $K$-amenable (e.g. $G=F_{2}, S L(2, \mathbb{R})$ ), then all the crossed products $C^{*}$-algebras

$$
\{A \rtimes G \mid \rtimes \text { a correspondence functor }\}
$$

have the same K-theory.
Theorem (Kaliszewski-Landstad-Quigg, Eussenterenferw. )
Define a completion of $C_{c}(G, A)$ by taking the covariant pair

$$
(A, G) \rightarrow\left(A \rtimes_{\max } G\right) \otimes C_{p}^{*}(G), \quad a \mapsto a, \quad g \mapsto g \otimes g,
$$

integrating to $C_{c}(G, A)$, and completing to $A \rtimes_{p} G$.
Then $\rtimes_{p}$ is a correspondence functor, and $\mathbb{C} \rtimes_{p} G=C_{p}^{*}(G)$.

For simplicity: $G$ discrete.
The Baum-Connes conjecture predicts that a certain assembly map

$$
\mu: K^{\operatorname{top}}(G ; A) \rightarrow K_{*}\left(A \rtimes_{\text {red }} G\right)
$$

is an isomorphism.

For simplicity: $G$ discrete.
The Baum-Connes conjecture predicts that a certain assembly map

$$
\mu: K^{\mathrm{top}}(G ; A) \rightarrow K_{*}\left(A \rtimes_{\text {red }} G\right)
$$

is an isomorphism.
Lemma
If

$$
0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0
$$

is a short exact sequence of G-C*-algebras and Baum-Connes holds, then

$$
K_{i}(I) \rightarrow K_{i}(A) \rightarrow K_{i}(B)
$$

is exact.

For simplicity: $G$ discrete.
The Baum-Connes conjecture predicts that a certain assembly map

$$
\mu: K^{\mathrm{top}}(G ; A) \rightarrow K_{*}\left(A \rtimes_{\text {red }} G\right)
$$

is an isomorphism.

## Lemma

If

$$
0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0
$$

is a short exact sequence of G-C*-algebras and Baum-Connes holds, then

$$
K_{i}(I) \rightarrow K_{i}(A) \rightarrow K_{i}(B)
$$

is exact.

## Theorem (Higson-Lafforgue-Skandalis)

For certain non-exact groups, this fails.

Question: to what extent is exactness the only obstruction to Baum-Connes?

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.
(0) $\rtimes_{e}$ takes short exact sequences to short exact sequences.

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.
(2) $\rtimes_{e}$ takes short exact sequences to short exact sequences.
(3) $\rtimes_{e}=\rtimes_{\text {red }}$ if and only if $G$ is exact.

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.
(2) $\rtimes_{e}$ takes short exact sequences to short exact sequences.
(3) $\rtimes_{e}=\rtimes_{\text {red }}$ if and only if $G$ is exact.
(1) If $G$ is non-amenable, $\rtimes_{e}<\rtimes_{\max }$.

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.
(2) $\rtimes_{e}$ takes short exact sequences to short exact sequences.
(3) $\rtimes_{e}=\rtimes_{\text {red }}$ if and only if $G$ is exact.
(1) If $G$ is non-amenable, $\rtimes_{e}<\rtimes_{\text {max }}$.

- None of the previous Baum-Connes counterexamples apply to the reformulated conjecture using $\rtimes_{e}$.

Question: to what extent is exactness the only obstruction to Baum-Connes?

## Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product $\rtimes_{e}$ by completing $C_{c}(G, A)$ in the representation

$$
(A, G) \rightarrow\left(A \otimes I^{\infty}(G)\right) \rtimes_{\max } G, \quad a \mapsto a \otimes 1, \quad g \mapsto g
$$

(1) $\rtimes_{e}$ is a correspondence functor.
(2) $\rtimes_{e}$ takes short exact sequences to short exact sequences.
(3) $x_{e}=\rtimes_{\text {red }}$ if and only if $G$ is exact.
(1) If $G$ is non-amenable, $\rtimes_{e}<\rtimes_{\text {max }}$.
(- None of the previous Baum-Connes counterexamples apply to the reformulated conjecture using $\rtimes_{e}$.
(1) Some previous counterexamples become confirming examples.

