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G : locally compact group (maybe discrete).

π : G Ñ UpHq: (strongly continuous) unitary representation.

Definition (Brown-Guentner, but Kunze-Stein „1960,
Gelfand-Naimark „1940, Mehler „1880,...)

For p P r2,8q, pπ,Hq is an Lp-representation if the set

tpη, ξq P H ‘ H | g ÞÑ x η , πpgqξ y is in LppG qu

is dense.

Examples:

The regular representation on L2pG q is an Lp-representation for all p.

The trivial representation on C is an Lp-representation only for p “ 8.

If p ą q, then any Lq-representation is an Lp-representation.
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Lp -representations

Lp-representation of G : has dense set of matrix coefficients in LppG q. Examples?

φ : G Ñ C is positive type if for tg1, ..., gnu Ď G , tz1, ..., znu Ď C,

n
ÿ

i,j“1

zizjφpg
´1
i gjq ě 0.

GNS  representation πφ : G Ñ UpHq, vector ξ with

φpgq “ xξ , πφpgqξy.

Lemma (Dixmier?)

If φ P LppG q is positive type, then πφ is an Lp-representation.

Proof: The dense subset CcpG q ¨ ξ gives rise to Lp matrix coefficients.
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Lp -representations

Positive type functions in LppG q
GNS
 Lp-representations.

Example: G “ F2.

Theorem (Haagerup?)

For each fixed t P r0,8s, the function

φt : F2 Ñ C, g ÞÑ e´t|g |

is positive type.
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Lp -representations

As for n ě 2,
|tg P F2 | |g | “ nu| “ 4 ¨ 3n´1

we have

}φt}
p
lppGq “ 1`

8
ÿ

n“1

p4 ¨ 3n´1qpe´tnqp „

8
ÿ

n“1

pe´tp3qn,

which is finite if and only if p ą logp3q{t.

Extrapolate: for any p ą q ě 2, F2 has Lp-representations which are not
Lq-representations.

Similar example: G “ SLp2,Rq: ‘the analogue’ of φpgq “ e´|g | is

φ
´

k

ˆ

a 0
0 a´1

˙

k 1
¯

“
1

2π

ż 2π

0

2

|pa2 ` a´2q ` pa2 ´ a´2q cospθq|
dθ.
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Lp -representations

Definition (Brown-Guentner)

C˚p pG q is the completion of CcpG q for the norm

}f } :“ supt}πpf q}BpHq | pH, πq an Lp-representationu.

Remarks:

For any G , C˚8pG q “ C˚maxpG q and C˚2 pG q “ C˚redpG q.

The duals pGp :“ {C˚p pG q are nested, i.e.

2 ď p ď q ď 8 ñ pG2 Ď pGp Ď pGq Ď pG

If G is amenable, C˚p pG q “ C˚q pG q for all p, q (and so pGp “ pGq).
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Lp -representations

Example: G “ SLp2,Rq.

Theorem (Wiersma, Stein?)

C˚p pG q ‰ C˚q pG q for all 8 ě p ą q ě 2.
On the other hand, K pC˚p pG qq “ K˚pC

˚
q pG qq for all p, q.
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Lp -representations

Example: G “ F2.

Theorem (Okayasu, Cuntz, Pimsner-Voiculescu, Buss-Echterhoff-W.)

C˚p pG q ‰ C˚q pG q for all 8 ě p ą q ě 2. Moreover, for all p:

Ki pC
˚
p pG qq –

"

Z i “ 0
Z‘ Z i “ 1
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Crossed product functors

How to prove that
K˚pC

˚
p pF2qq “ K˚pC

˚
q pF2qq

for all p, q?

Strategy:

1 Define an exotic crossed product functor

¸p : tG -C˚-algebrasu Ñ tC˚-algebrasu, A ÞÑ A¸p G

such that C¸p G “ C˚p pG q.

2 Show that it gives rise to a descent functor

¸p : KKG Ñ KK .

3 Use that in KKG , C is equivalent to an amenable G -C˚-algebra A (Cuntz),
and here all crossed products are the same.
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Crossed product functors

Definition (Baum-Guentner-W. ?)

A crossed product is a functor

¸ : tG -C˚-algebrasu Ñ tC˚-algebrasu, A ÞÑ A¸ G

such that there are surjective natural transformations

A¸max G � A¸ G � A¸red G

which compose to the standard quotient A¸max G � A¸red G .

Examples: ¸max, ¸red, but many others due to Brown-Guentner,
Kaliszewski-Landstad-Quigg,...
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Crossed product functors

Theorem (Buss-Echterhoff-W.)

Let ¸ be a crossed product functor. The following are equivalent.

1 If pAp is a G -invariant corner of A, then

ppApq ¸ G Ñ A¸ G

is injective.

2 ¸ extends to a functor on the category of G -C˚-algebras and equivariant cp
maps.

3 ¸ extends to a functor on the category of G -C˚-algebras and equivariant
correspondences (in the sense of Rieffel,
Echterhoff-Kaliszewski-Quigg-Raeburn).

If ¸ satisfies these conditions, we call it a correspondence functor.
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Crossed product functors

Theorem (Buss-Echterhoff-W.)

Any correspondence functor induces a descent morphism

¸ : KKG Ñ KK .

With a little more work, if G is K -amenable (e.g. G “ F2, SLp2,Rq), then all the
crossed products C˚-algebras

tA¸ G | ¸ a correspondence functoru

have the same K -theory.

Theorem (Kaliszewski-Landstad-Quigg, Buss-Echterhoff-W. )

Define a completion of CcpG ,Aq by taking the covariant pair

pA,G q Ñ pA¸max G q b C˚p pG q, a ÞÑ a, g ÞÑ g b g ,

integrating to CcpG ,Aq, and completing to A¸p G .

Then ¸p is a correspondence functor, and C¸p G “ C˚p pG q.
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Exactness of the Baum-Connes conjecture

For simplicity: G discrete.
The Baum-Connes conjecture predicts that a certain assembly map

µ : K toppG ;Aq Ñ K˚pA¸red G q

is an isomorphism.

Lemma
If

0 Ñ I Ñ AÑ B Ñ 0

is a short exact sequence of G -C˚-algebras and Baum-Connes holds, then

Ki pI q Ñ Ki pAq Ñ Ki pBq

is exact.

Theorem (Higson-Lafforgue-Skandalis)

For certain non-exact groups, this fails.

14 / 15



Exactness of the Baum-Connes conjecture

For simplicity: G discrete.
The Baum-Connes conjecture predicts that a certain assembly map

µ : K toppG ;Aq Ñ K˚pA¸red G q

is an isomorphism.

Lemma
If

0 Ñ I Ñ AÑ B Ñ 0

is a short exact sequence of G -C˚-algebras and Baum-Connes holds, then

Ki pI q Ñ Ki pAq Ñ Ki pBq

is exact.

Theorem (Higson-Lafforgue-Skandalis)

For certain non-exact groups, this fails.

14 / 15



Exactness of the Baum-Connes conjecture

For simplicity: G discrete.
The Baum-Connes conjecture predicts that a certain assembly map

µ : K toppG ;Aq Ñ K˚pA¸red G q

is an isomorphism.

Lemma
If

0 Ñ I Ñ AÑ B Ñ 0

is a short exact sequence of G -C˚-algebras and Baum-Connes holds, then

Ki pI q Ñ Ki pAq Ñ Ki pBq

is exact.

Theorem (Higson-Lafforgue-Skandalis)

For certain non-exact groups, this fails.

14 / 15



Exactness of the Baum-Connes conjecture

Question: to what extent is exactness the only obstruction to Baum-Connes?

Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product ¸e by completing CcpG ,Aq in the representation

pA,G q Ñ pAb l8pG qq ¸max G , a ÞÑ ab 1, g ÞÑ g

1 ¸e is a correspondence functor.

2 ¸e takes short exact sequences to short exact sequences.

3 ¸e “ ¸red if and only if G is exact.

4 If G is non-amenable, ¸e ă ¸max.

5 None of the previous Baum-Connes counterexamples apply to the
reformulated conjecture using ¸e .

6 Some previous counterexamples become confirming examples.
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