Exotic Crossed Products

Rufus Willett
(joint with Alcides Buss and Siegfried Echterhoff, and with Paul Baum and Erik
Guentner)

University of Hawai'i

WCOAS, University of Denver, November 2014

1/15



NS
G : locally compact group (maybe discrete).

1PN G4
2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

Definition (Brown-Guentner,

2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

Definition (Brown-Guentner, but Kunze-Stein ~1960,
Gelfand-Naimark ~1940, Mehler ~1880,...)

For p € [2,0), (m, H) is an LP-representation if the set

{(n,§) e HOH [ g (n,m(g)§ )isin LP(G)}

is dense.

2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

Definition (Brown-Guentner, but Kunze-Stein ~1960,
Gelfand-Naimark ~1940, Mehler ~1880,...)

For p € [2,0), (m, H) is an LP-representation if the set

{(n,§) e HOH [ g (n,m(g)§ )isin LP(G)}

is dense.

Examples:
@ The regular representation on L?(G) is an LP-representation for all p.

2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

Definition (Brown-Guentner, but Kunze-Stein ~1960,
Gelfand-Naimark ~1940, Mehler ~1880,...)

For p € [2,0), (m, H) is an LP-representation if the set

{(n,§) e HOH [ g (n,m(g)§ )isin LP(G)}

is dense.

Examples:
@ The regular representation on L?(G) is an LP-representation for all p.
@ The trivial representation on C is an LP-representation only for p = co.

2/15



G : locally compact group (maybe discrete).

7m: G — U(H): (strongly continuous) unitary representation.

Definition (Brown-Guentner, but Kunze-Stein ~1960,
Gelfand-Naimark ~1940, Mehler ~1880,...)

For p € [2,0), (m, H) is an LP-representation if the set

{(n,§) e HOH [ g (n,m(g)§ )isin LP(G)}

is dense.

Examples:
@ The regular representation on L?(G) is an LP-representation for all p.
@ The trivial representation on C is an LP-representation only for p = co.

o If p > g, then any L9-representation is an LP-representation.
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© Crossed product functors

© Exactness of the Baum-Connes conjecture
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LP-representations

LP-representation of G: has dense set of matrix coefficients in LP(G). Examples?

¢ : G — C is positive type if for {g1,...,g,} € G, {z1,...,z,} € C,

n

> Zizi(g ' g) = 0.
ij=1

GNS ~~ representation w4 : G — U(H), vector £ with

d(g) = <&, my(g)E)-

Lemma (Dixmier?) J

If ¢ € LP(G) is positive type, then 4 is an LP-representation.

Proof: The dense subset C.(G) - £ gives rise to LP matrix coefficients. [
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LP-representations

" o GNS :
Positive type functions in LP(G) ~5 LP-representations.

Example: G = F,.

Theorem (Haagerup?)

For each fixed t € [0, 0], the function
¢r:Fr > C, g e tlel

is positive type.
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8

0
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n=1
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LP-representations

As for n > 2,
{geF|lgl=n}=4-3""

we have

8

a0
[@elf o) =1+ D3 (43" 1) (e ™MP ~ 3 (e7*3)",
n=1

n=1

which is finite if and only if p > log(3)/t.

Extrapolate: for any p > g > 2, F, has LP-representations which are not
L9-representations.

Similar example: G = SL(2,R): ‘the analogue’ of ¢(g) = e~ 18l is

a o0 A1 2m 2
o[k (o a_1>k>_2w s (P a1 (@ —a?)cos(d)
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Definition (Brown-Guentner)
C;(G) is the completion of C.(G) for the norm
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LP-representations

Definition (Brown-Guentner)
C;(G) is the completion of C.(G) for the norm

[ ]l := sup{|7(f)l sz | (H,7) an LP-representation}.

Remarks:
e Forany G, C¥(G) = C#,,(G) and Cf(G) = C%,(G).

—

@ The duals @p = C¥(G) are nested, i.e.

~ ~ ~

2<p<g<w = 2 & Gp &

Q
N
(DN

o If G is amenable, C}(G) = C7(G) for all p, g (and so @p = éq).
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Example: G = SL(2,R).

M:mp.nﬁ# C-t(6>
T m:m{).nga@q}(é)
SLOLR) — st D e Q, )

o = mb exteads fp C2(C)

o0 ——
Tbwidd roiowoMJwL\m
Theorem (Wiersma, Stein?)

Ci(G) # Cx(G) forallco = p>q > 2.
On the other hand, K(C;(G)) = K«(C;(G)) for all p,q.
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Example: G = F,.

e _f_f’_e'f_?\; M:mp%# Ci(é)
= ” o = ,ﬁpﬁs d# C%( é))/

semat D€ Q2, /)
unra-*um c‘j?mns}mlﬂ‘ b e ’ 1% )

i el opyy i
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M:mpnﬁa‘ﬂ C-T_(G)
2 :nspnsd# C%(é)/
semat D€ Q, =)

o mb exleads fo (2(C)

~ A—
unra-)w.uxl S&T‘-’.'LL‘ iy
n AReeke I:D\Oo\w Wik o preceo

Theorem (Okayasu, Cuntz, Pimsner-Voiculescu, Buss-Echterhoff-W.)
Cx(G) # CX(G) forall o> p>q=2.
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M:mpnﬁa‘ﬂ C-T_(G)
2 :nspnsd# C%(é)/
semat D€ Q, =)

o mb exleads fo (2(C)

~ A —
unra-)w.uxl S&T‘-’.'LL‘
n AReeke I:D\Oo\w e L, ol oo

Theorem (Okayasu, Cuntz, Pimsner-Voiculescu, Buss-Echterhoff-W.)
Cx(G) # C(G) for all o = p> q = 2. Moreover, for all p:

Z i=0
Z®7Z i=1

I

Ki(G5(G))

p
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How to prove that
for all p, q?

Ki(Co (F2)) = Ki(C5 (FR2))
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Crossed product functors

How to prove that
K (G (R2)) = K (G5 (F2))

for all p, g7

Strategy:
@ Define an exotic crossed product functor

X, {G-C*-algebras} — {C*-algebras}, A+— Ax,G

such that C x, G = C;(G).
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Crossed product functors

How to prove that
K (G (F2)) = Ki(Cg(F2))

for all p, g7

Strategy:
@ Define an exotic crossed product functor

X, {G-C*-algebras} — {C*-algebras}, A+— Ax,G

such that C x, G = C;(G).
@ Show that it gives rise to a descent functor

X, KK¢ — KK.

© Use that in KK©, C is equivalent to an amenable G-C*-algebra A (Cuntz),
and here all crossed products are the same.
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Crossed product functors

Definition (Baum-Guentner-W. ?)

A crossed product is a functor
x : {G-C*-algebras} — {C*-algebras}, A— Ax G
such that there are surjective natural transformations

AXmax G > AX G —» AXeqg G

which compose to the standard quotient A Xmax G — A Xyeq G.
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Crossed product functors

Definition (Baum-Guentner-W. ?)

A crossed product is a functor
x : {G-C*-algebras} — {C*-algebras}, A— Ax G
such that there are surjective natural transformations
AXmax G > AX G —» AXeqg G

which compose to the standard quotient A Xmax G — A Xyeq G.

Examples: Xmax, Xred, but many others due to Brown-Guentner,
Kaliszewski-Landstad-Quigg, ...
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Crossed product functors

Theorem (Buss-Echterhoff-W.)

Let x be a crossed product functor. The following are equivalent.
© If pAp is a G-invariant corner of A, then

(pPAp) x G > Ax G

is injective.
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Crossed product functors

Theorem (Buss-Echterhoff-W.)

Let x be a crossed product functor. The following are equivalent.
© If pAp is a G-invariant corner of A, then

(pPAp) x G > Ax G
is injective.
@ x extends to a functor on the category of G-C*-algebras and equivariant cp

maps.

© x extends to a functor on the category of G-C*-algebras and equivariant
correspondences (in the sense of Rieffel,
Echterhoff-Kaliszewski-Quigg-Raeburn).

If x satisfies these conditions, we call it a correspondence functor.
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Theorem (Buss-Echterhoff-W.)

Any correspondence functor induces a descent morphism
% KK — KK.

With a little more work, if G is K-amenable (e.g. G = F,, SL(2,R)), then all the
crossed products C*-algebras

{Ax G| % a correspondence functor}

have the same K-theory.

13/15



Theorem (Buss-Echterhoff-W.)

Any correspondence functor induces a descent morphism
% KK — KK.

With a little more work, if G is K-amenable (e.g. G = F,, SL(2,R)), then all the
crossed products C*-algebras

{Ax G| x a correspondence functor}

have the same K-theory.

Theorem (Kaliszewski-Landstad-Quigg, susccherorw. )
Define a completion of C.(G,A) by taking the covariant pair

(A,G) = (Axmax ) ® CJ(G), a—a, g—gQ8,

integrating to C.(G, A), and completing to A xp, G.

Then x, is a correspondence functor, and C x, G = C;(G).

y
3715



Exactness of the Baum-Connes conjecture

For simplicity: G discrete.
The Baum-Connes conjecture predicts that a certain assembly map

p: K (G; A) — Ky (A Xreq G)

is an isomorphism.
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Exactness of the Baum-Connes conjecture

For simplicity: G discrete.
The Baum-Connes conjecture predicts that a certain assembly map

p: K (G; A) — Ky (A Xreq G)
is an isomorphism.

Lemma

If
0—-/—-A—-B—-0

is a short exact sequence of G-C*-algebras and Baum-Connes holds, then
Ki(l) — Ki(A) — Ki(B)

is exact.

Theorem (Higson-Lafforgue-Skandalis)

For certain non-exact groups, this fails.
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Exactness of the Baum-Connes conjecture

Question: to what extent is exactness the only obstruction to Baum-Connes?

Theorem (Baum-Guentner-W., Buss-Echterhoff-W.)

Define a crossed product x. by completing C.(G, A) in the representation

(AvG)_’(A®/OO(G>) Xmax G, a—a®l, g—g

X IS a correspondence functor.

X takes short exact sequences to short exact sequences.
Xe = Xyeq If and only if G is exact.

If G is non-amenable, X. < Xmax-

None of the previous Baum-Connes counterexamples apply to the
reformulated conjecture using X .

© 000O0CO0

Some previous counterexamples become confirming examples.
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